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Abstract

Code synthesis is routinely used in industry to generate

GUIs, form �lling applications, and database support code

and is even used with COBOL. In this paper we consider

the question of whether code synthesis could also be

applied to the data mining phase of knowledge discovery.

We view this as a rapid prototyping method. Rapid

prototyping of statistical data analysis algorithms would

allow experienced analysts to experiment with di�erent

statistical models before choosing one, but without requiring

prohibitively expensive programming e�orts. It would also

smooth the steep learning curve often faced by novice

users of data mining tools and libraries. Finally, it would

accelerate dissemination of essential research results and the

development of applications.

In this paper, we present a framework and the basic

software for the automated synthesis of data analysis

programs. We use a speci�cation language that generalizes

Bayesian networks, a popular notation used in many

communities. Using decomposition methods and algorithm

templates, our system transforms the network through

several levels of representation and then �nally into pseudo-

code which can be translated into the implementation

language of choice. Here, we explain the framework on a

mixture of Gaussians model, a core data mining algorithm at

the heart of many commercial clustering tools. We mention

the e�ectiveness of our framework by generating pseudo-

code for some more sophisticated algorithms from recent

literature.
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1 Introduction

A key component of the data mining task within knowl-
edge discovery is statistical data analysis. Applied and
computational statisticians who perform this task on
smaller data sets use experimentation with di�erent
statistical models and development of specialized algo-
rithms to achieve reliable and useful results, especially
in situations where the data cannot be cast into a form
suitable for one of the standard algorithms. This ca-
pability is not practically availiable to the knowledge
discovery community.

In this paper we develop an alternative approach to
rapid prototyping of data mining tools based on pro-

gram synthesis, the derivation of a program that meets
a given speci�cation. We apply these methods to syn-
thesize data analysis programs from Bayesian network
speci�cations using a library of e�cient algorithm tem-
plates together with core special-purpose algorithms
and general purpose solvers, related to a suggestion
from [3]. We show that this approach can address non-
trivial data analysis problems.

Our approach is motivated by three observations.
First, the success of BUGS [16] demonstrates the
need for data analysis tools suitable for reliable rapid
prototyping. Second, Bayesian networks provide a
ready, unifying speci�cation language, as seen by their
widespread use in communities such as applied Bayesian
statistics and neural information processing [17, 8];
their role for the data mining community is to provide
a 
exible data modeling language [4]. Finally, program
synthesis has been proven to be competitive in other
domains. It o�ers:

� Rapid turn-around : even for large tasks mature
synthesis systems usually require less than a few
minutes to produce code [11, 2].

� Reliability : synthesized code is used in production
systems to schedule military logistics [2] or to price
stock options [15].

� E�ciency : synthesized code can be an order of
magnitude faster than hand-crafted special-purpose



code [2].

However, to the best of our knowledge, program synthe-
sis has not previously been applied to data analysis al-
gorithms; an edited discussion on its relevance appears
in [5]. Speci�c advantages for data analysis, other than
rapid prototyping, are that generated code should be
time and space e�cient; to achieve this we would rely
on high-performance optimizing compiler techniques [1]
coupled to our pseudo-code, as discussed in Section 3.2.

2 Preliminaries

2.1 A simple problem

As a simple running example to illustrate our concepts
we will use mixture of Gaussians (cf. Fig. 1). It is
covered in detail in many statistical texts, e.g., in [3].
This is a model for the measured data vector ~x based
on parameter vectors ~�; ~�; ~� that are to be estimated.
Figure 1(a) shows a two dimensional version of the
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Figure 1: A mixture of Gaussians: data and model

problem where each Gaussian can be fully covariate.
Here, example data is represented with a scatter plot;
projections of the component Gaussians that make up
the distribution are shown on both axes. The dots are
roughly clustered in four blobs: top left, bottom right,
bottom left, and a diagonal blob. Hence, C, the number
of Gaussians being \mixed", is four.
The Bayesian network for the model is given in

Fig. 1(b). Bayesian networks are acyclic directed graphs
that de�ne probabilistic dependencies between vari-
ables; we assume the reader is familiar with them.1 The
box placed around the variables c and x indicates that
they are vectors of data where each of the 200 compo-
nents is independently and identically distributed. The
vector ~c (the \hidden variable" of the model which cap-
tures the assignment of the dots to the blobs) is discrete,
with each entry taking a value f1; 2; :::; Cg, and the vec-
tor ~x is real valued. The full joint probability for this
model is

Pr(�)Pr(�)Pr(� j�)

200Y

i=1

Pr(ci j�)Pr(xi j�[ci]; �[ci]) ;

where � parameterizes the discrete distribution over
each discrete value ci for i = 1; : : : ; 200, and (�[j]; �[j])
are the Gaussian parameters for each of j = 1; : : : ; C

1Tutorials and references can available at www.auai.org.

Gaussian peaks in the data. The precise form of
the prior distributions for �; �; � is left unspeci�ed
here; they could be considered as variables for a
maximum likelihood analysis, or be fully speci�ed for
a Bayesian analysis. An intuitive interpretation of
this mixture model is that we �rst generate data from
C individual Gaussians, mix up these data according
to the proportions given by �, and throw away the
information regarding the original Gaussian source.
This kind of problem is traditionally handled using an

algorithm known as Expectation-Maximization (EM);
our presentation follows [12]. In the mixture of
Gaussian problem, one common interpretation of the
learning task is to seek to maximize

PN

i=1 logPr(xi j
~�; ~�; ~�). The problem here is that the inner probabilities
are themselves a sum over ci, Pr(xi j ~�; ~�; ~�) =PC

j=1 Pr(xi; ci j ~�; ~�; ~�), and the combination with the
log makes the formula intractable. To overcome this,
a new set of parameters is introduced and a cyclic \re-
estimation" method is used as follows:

1. Set qi;j = Pr(ci = j jxi; ~�; ~�; ~�) for i = 1; : : : ; N and
j = 1; : : : ; C. Thus ~q is a discrete distribution on ~c.

2. Maximize E~c�~q [logPr(~x;~c j~�; ~�; ~�)] for ~�; ~�; ~� given
~q above. Here, the log probability is evaluated
according to the correct model, and then ~c is
quanti�ed out by averaging using ~q.

This EM algorithm applies for these general probability
forms, and not just the mixture of Gaussians.

2.2 Indexed variables, Bayesian networks

In data analysis, indexed variables as vectors of data
points, ~x = fx1; : : : ; xNg with independent and iden-

tical distributions, or vectors of parameters ~� =
f�1; : : : ; �Cg that behave similarly (e.g., di�erent nodes
in a neural net) prevail. In Bayesian networks, such
variables should not be \unfolded" (i.e., represented
fully) because that obscures the model's regularities and
increases the network's size. Instead, the network con-
tains the most general representation and is unfolded
only by demand and only locally. Hence, the represen-
tation must allow full vectors, ~x, generic single compo-
nents, xi, and particular single components, x5.

Our system uses Prolog-terms; a theory of indexed
Bayesian networks, where indices are represented as
Prolog variables is developed in [7]. The conditions
required on the depends-literals2 are as follows: (1)
each term in the second argument matches a term
in the �rst argument of some other depends-literals,
(2) any variable in the second argument must appear
in the �rst, (3) the �rst arguments for two di�erent
literals cannot match, (4) the resulting graph is acyclic.

2depends(Var,VarList) says the variable Var depends on the

set of variables VarList.



These conditions arise naturally from our speci�cation
language. We have extended Haddawy's results to work
with non-ground probability queries since we seek to
determine probabilities over indexed vectors. Tests for
independence on these indexed Bayesian networks are
easily developed in Lauritzen's framework which uses
ancestral sets and set separation [9].

2.3 Expressions for probabilities

Given a Bayesian network, some probabilities can
easily be extracted by enumerating the component
probabilities at each node:

Lemma 1 Let U; V be sets of variables over a Bayesian
network with U \ V = ;. Then V \ descendants(U) =
; and parents(U) � V hold in the corresponding
dependency graph i� the following probability statement
holds:

Pr(U jV ) = Pr(U jparents(U)) =
Y

u2U

Pr(u jparents(u))

How can probabilities not satisfying these conditions
be converted to symbolic expressions? Symbolic prob-
abilistic inference [10], for instance extracts an e�cient
expression for a particular marginal probability, p(U).
We have developed another result that lets us extract
probabilities on a large class of mixed discrete and real,
potentially indexed variables, where no integrals are
needed and all marginalization is done by summing
out discrete variables. We give the non-indexed case
below; this is readily extended to indexed variables.
Lemma 2 lets us evaluate a probability by a summa-
tion: Pr(U j V ) =

P
u02Dom(U 0) Pr(U 0 = u0; U j V ).

Lemma 3 lets us evaluate a probability by a summation
and a ratio:

Pr(U jV ) =
q(u)P

u2Dom(U)
q(u)

;

where q(u) =
P

u02Dom(U 0) Pr(U 0 = u0; U; V=V 0 jV 0).

Lemma 2 V \descendants(U) = ; holds and ancestors(V )
is independent of U given V i� there exists a set

of variables U 0 such that Lemma 1 holds if we re-

place U by U [ U 0. Moreover, the unique min-

imal set U 0 satisfying these conditions is given by

ancestors(U) /(ancestors(V ) [ V )

Lemma 3 Let V 0 be a subset of V=descendants(U)
such that ancestors(V 0) is independent of (U [V )=(V 0[
ancestors(V 0)) given V 0. Then Lemma 2 holds if we

replace U by U [ V=V 0 and V by V 0. Moreover, there

is a unique maximal set V 0 satisfying these conditions.

Since the lemmas also show minimality of the sets
U 0 and V=V 0, they also give the minimal conditions
under which a probability can be evaluated by discrete
summation without integration. We usually attempt to
decompose a probability into independent components
before applying these results.

3 The Framework

3.1 Speci�cation language PN

Our speci�cation language PN (Probabilistic Networks)
is a simple textual notation to describe networks as in
Fig. 1(b) and to specify the distributions and equations
at each node. The following small speci�cation is
already su�cient to model the Mixture of Gaussians.

constant Int N = 200, C=4;

Real mu[C], sigma[C];

ProbabilityVector(C) rho;

for(i=1,N) c[i] ~ Discrete(rho);

for(i=1,N) x[i] ~ Gaussian(mu[c[i]],sigma[c[i]]);

optimize mu,sigma,rho

for Pr(x|mu,sigma,rho) given x;

The �rst block de�nes the model constants N and C and
declares the parameter vectors ~�; ~� and ~� with their
respective types and dimensions; all types are built-
in. Since the parameter vectors are to be estimated
using a maximum likelihood analysis, no probability
distributions are speci�ed.

The second block de�nes the hidden variable ~c and
the observed data vector ~x which will ultimately become
the only input to the synthesized program. Both vectors
are independently and identically distributed, as the
for-construct mirrors the box-notation of the graphs;
however, the distribution parameters may be shared
over all instances (as for ~�) or not (as for ~x).
The Bayesian network for the distribution is ex-

tracted from the speci�cation dynamically and pro-
cessed extensively with graph operations to deter-
mine applicability of di�erent transformations. The
above model is thus represented by the following small
database, where each literal represents all arcs into a
single node:

depends(sigma,[]). depends(rho,[]).

depends(mu,[sigma]). depends(c(I),[rho]).

depends(x(I),[mu,sigma,c(I)]).

The �nal part of the speci�cation is the optimization

statement. It speci�es the variables to be optimized
together with the initial probability expression; the
trailing clause given fxg identi�es ~x as the initial data
vector. A di�erent analysis, e.g., a Bayesian version,
can be speci�ed simply by changing the optimization
statement.

3.2 Pseudo-code

For two reasons, our system generates an intermediate-
level pseudo-code and not any particular target lan-
guage. First, pseudo-code is easier to translate into a
variety of languages. Second, and more important, it is
easier to optimize. Standard implementation languages,
such as C++ and C, allow programming constructs that



defeat good optimization, and the array languages of-
ten result in a programming style that defeats good op-
timization as well, as programmers attempt to avoid
explicit iteration \at all costs." Thus program synthe-
sis has the added advantage that it can probably make
better use of modern code optimization capabilities [1]
than most programmers.

3.3 Outline of the implementation

The system implementation comprises 5000 lines of
documented Prolog. A number of procedures are
speci�cally designed for manipulating indexed sums
and products, and probabilities over independently and
identically distributed array variables as in Section 2.2.
We also have a database of distributions, and symbolic
routines for simplifying formula and probabilities in
various ways: simplifying the log of a formula, moving
a summation inwards, splitting a formula into its linear
components, symbolically deriving a derivative, etc.
Internally, our system uses three conceptually dif-

ferent levels of representation. Probabilities (includ-
ing logarithmic and conditional probabilities) are the
most abstract level. They are processed via methods for
Bayesian network decomposition or matches with core
algorithms such as EM. Formulae are introduced when
probabilities of the form Pr(U j parents(U)), where
parents(U) is the set of variables appearing in the def-
inition for U , are detected, either in the initial net-
work, or after the application of network decomposi-
tions. Atomic probabilities (i.e., U is a single variable)
are directly replaced by formulae based on the given
distribution and its parameters. General probabilities
are decomposed into sums and products of the respec-
tive atomic probabilities. Pseudo-code programs are the
lowest level of representation. They contain no proba-
bilities and are ready for immediate optimization using
symbolic or numeric methods but they can still be de-
composed into independent subproblems. Each of the
program transformations we apply operates on or be-
tween these levels.

3.4 Transformations for optimization

Our current list of transformations is as follows. Decom-

position of a problem into independent sub-problems is
always done. Decomposition of probabilities is driven
by the Bayesian network, we also have a separate sys-
tem for handling decomposition of formulae. A formula
can be decomposed along a loop, e.g., the problem \op-
timize ~� for

Q
i f(�i)" is transformed into a for-loop over

subproblems \optimize �i for f(�i)". More commonly,
\optimize �; � for f(�) + g(�)" is transformed into the
two subprograms \optimize � for f(�)" and \optimize
� for g(�)".
The lemmas in Section 2.3 are applied to change the

level of representation and thus for simpli�cation of

probabilities.

The statistical algorithm schemas currently imple-
mented are EM. Usually, the schemas require a par-
ticular form of the probabilities involved; they are thus
tightly coupled to the decomposition and simpli�cation
transformations. E.g., EM is a way of dealing with sit-
uation where Lemma 2 applies but where U 0 is indexed
identically to the data.

Likelihoods of the exponential family (i.e., sub-expres-
sions of the form log

Q
i Pr(xi j�)) are identi�ed in the

initial speci�cation or in intermediate representations
and simpli�ed into linear expression with terms such as
mean(xi) and mean(x2i ).

As �nal resort, we pass formulae which cannot be
handled symbolically o� to a general purpose package
for numerical optimization.

4 Some Examples

4.1 Mixture of Gaussians

Here, we show how our system derives pseudo-code
for the mixture of Gaussians example as speci�ed in
Section 2.1.

The probability in the initial optimization state-
ment matches the conditions of Lemma 2; moreover,
U 0 is just f~cg which has the same dimensions as the
given data vector ~x. This condition triggers the
EM algorithm as described in Section 2.1, and in-
stantiates its schema, resulting in the partial program:
while(converging(�; �; �))

for((i,j), ([1,200],[1,4]))

qi;j = Pr(ci = jjxi = j; �; �);

optimize f�; �; �g
for LogPr(xi; ci j�ci ; �ci ; �)
given fci � qi;�, xg

In this, converging is a generic convergence criterion im-
posed over the variables ~�; ~�; ~�. Given ci � qi;� implies
we quantify ci out of the objective by averaging. The
loop bounds are easily extracted from the speci�cation.
The instantiated schema also contains two recursive
calls to the synthesis system. The �rst is hidden in the
the evaluation of qi;j using Lemma 3; the pseudo-code
resulting from this call consists only of the symbolic
expression representing the value of the probability.
The second is represented explicitly by the optimization
statement. Here, ci is averaged out with the discrete
distribution with parameters qi;�, and the log probabil-
ity is evaluated using Lemma 1. The Bayesian (sub-)
network to evaluate this reduced problem reveals that
~� is independent of ~�; ~� thus the optimization problem
can be decomposed. The second half of this decomposi-
tion contains the optimization goal logPr(xi j �ci ; �ci)
which (under the given distribution for ci) is simpli�ed

into
P4

j=1 qi;j logPr(xi j �j ; �j). This formula is then
decomposed along the index j, leaving



while(converging(�; �; �))

for((i,j), ([1,200],[1,4]))

qi;j = Pr(xijci = j; �; �);

optimize(� :
P

j
�j = 1 ,

P
4

j=1
(
P

200

i=1
qi;j)�j);

for(j, [1,4])

optimize(f�j ; �jg,
P

200

i=1
qi;j log Pr(xi j�j ; �j))))

The �rst optimization statement here is solved exactly
to yield that ~� is set to ~q-weighted frequencies. The
second optimize statement is matched with a weighted
log probability of a Gaussian, and thus turned into an
expression for each �j ; �j involving ~q-weighted means

of ~x and ~x2. This is then solved exactly for �j ; �j .
Thus, the usual EM algorithm for mixture of Gaussians
is derived.

4.2 Additional examples

We have tested our system on a variety of di�erent
problems. These include the Conditional EM approach,
the simple Bayes classi�er, linear regression on non-
linear basis functions with Bayesian smoothing, and
a \curve clustering" model suggested by Smyth which
attempts to �t multiple curves at once. Our system
yielded correct pseudo-code in all cases.

We also modelled the distributional clustering frame-
work of [14] but without introducing their \tempera-
ture" parameter. This method is the basis of techniques
for featurizing documents by generating clusters of re-
lated words, and versions of it are used in text mining.
We also encoded the factorial Gaussian mixture model
of [6] which uses multiple hidden variables to capture
di�erent hidden causes. This is a more complex model
that may be important for analysing image data. We
modeled the E-step via a combinatorial exact computa-
tion.

5 Conclusions

The one aspect of our framework not demonstrated
is the generation of target code from pseudo-code,
and thus a �nal empirical evaluation of the algorithms
generated.

We have demonstrated the general feasibility of our
approach, but also raised issues for future work. In the
near future, we will develop a back-end for Java and/or
Matlab. Necessary research to make this method
suitable for data mining at a commercial level is to have
the algorithms scale on large data-sets. While this is
beyond the scope of our current research, we believe
our demonstration here is an important �rst step while
methods for scaling are still undergoing development.
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